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It is shown how the concept of a Jordan pair, which generalizes that of Jordan 
algebra and links Jordan algebras to Lie algebras, enters a model for supergravity. 
studied recently by Gi.inaydin, Sierra, and Townsend, called "magical super- 
gravity." This model is very briefly reviewed, as are the reasons that led, starting 
from the theory of Jordan algebras, to the definition and development of Jordan 
pairs. Examples of Jordan pairs are given, which show the beauty, simplicity, 
and usefulness of such objects. 

I .  I N T R O D U C T I O N  

One o f  the most  a p p e a l i n g  features  o f  supe r symmet ry  is tha t  it l eads  
na tura l ly  to supergravi ty ,  once rea l ized  loca l ly  (Cremmer ,  1982; van Nieu-  
wenhuizen ,  1981). This  is ra ther  intui t ive if  one th inks  of  the a lgebra  of  
s upe r symmet ry  genera tors :  

{Q'o ' -  , 2 6 j o - ~ P ~  (1) 

where  i, j = 1 , . . . ,  N are the  indices  fo r  the  ex tended  theory.  Since the 
c o m b i n a t i o n  o f  two supe r symmet ry  t r ans fo rma t ions  amount s  to moving  
f rom one po in t  to ano the r  po in t  in space t ime,  local  supe r symmet ry  impl ies  
tha t  such t r ans la t ion  be re la ted  to a s p a c e t i m e - d e p e n d e n t  pa ramete r ,  which  
effectively means  pe r fo rming  a genera l  coo rd ina t e  t r ans format ion .  The 
gravi ton,  be ing  the gauge  field of  genera l  coo rd ina t e  t r ans fo rmat ions ,  there-  
fore enters  na tura l ly  in the theory ,  toge ther  wi th  a d i m e n s i o n e d  grav i ta t iona l  
coupl ing  cons tan t  and  with  its fe rmionic  par tner ,  the spin-~ gravi t ino,  the 
gauge  field o f  local  s u p e r s y m m e t r y  t r ans fo rmat ions .  Therefore  one cou ld  
start  f rom a theory  rea l ized  jus t  in terms o f  one gravi ton  and  one  gravi t ino,  
which  is re fer red  to a s  N = 1 " p u r e  supergrav i ty . "  There  are three  w a y s - -  
p lus  combina t ions  o f  t h e s e - - o f  add ing  mat te r  mul t ip le t s  to pure  super-  
gravity:  
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1. Add an arbitrary number of matter fields, that is, vector or chiral 
multiplets (Ferrara, and Fayet, 1977) with their internal symmetry quantum 
numbers (Ferrara et al., 1976). 

2. Extend the supersymmetry to N > 1 (spinorial) supersymmetry gen- 
erators (N = 8 being the upper limit for the theory so as not to yield particles 
of spin higher than 2) (Cremmer and Julia, 1978, 1979); in this case indeed 
fields of spin lower than 3 appear in the graviton multiplet. 

3. Extend the dimensionality of spacetime (/t la Kaluza-Klein) to a 
dimension d > 4 (d < 11 being the analogous limitation as in the previous 
case) and then proceed to the reduction of the theory to four dimensions, 
by a procedure called spontaneous compactification (Cremmer and Sherk, 
1977); in this case the components of the graviton and gravitino related to 
the extra coordinates constitute, in four dimensions, fields of lower spin. 

The present paper concerns the reduction to four dimensions of a 
theory, extensively worked out by Giinaydin, Sierra, and Townsend (GST) 
(Giinaydin et al. (1983, 1984), which combines the three above ways of 
introducing matter fields in the theory. The starting point of the work of 
GST is the formulation of N = 2, d = 5 supergravity coupled to n Maxwell 
(i.e., Abelian) vector fields. Two important features of this theory are the 
unification of gravity with an electromagnetic type of interaction and, most 
interestingly in my point of view, the existence of an "exceptional case" 
which (contrary to all other cases) cannot be derived from a suitable N = 8 
theory--that  is to say, another upper limit beyond the usual N = 8 case. 
The exceptional case is related to exceptional symmetry groups for the 
Lagrangian: one more reason for becoming interested in such models, given 
the growing success of theories [in particular the superstring theory (Green 
and Schwarz, 1984; Candelas et al., 1985)] involving the exceptional groups 
(Jacobson, 1971; Gfirsey 1975, 1977, 1978; Gfinaydin et al., 1978). The GST 
theory will be briefly outlined in Section 3. 

The object of investigation of the present paper is the manifold para- 
metrized by the scalar fields of such a theory. The motivation for studying 
in particular the scalar manifolds in extended supergravity is given in the 
next section, where I introduce these manifolds in a brief and informal 
review. 

The work by Gfinaydin, Sierra, and Townsend put very nicely into an 
algebraic form all the constraints characterizing the geometry of the scalar 
fields of their model. In a recent paper (Truini et aL, 1985) we pursued this 
algebraic approach by emphasizing that there is a very interesting mathe- 
matical structure (which is quite new to physicists) underlying the GST 
theory in four dimensions: the structure of a Jordan pair. Besides reviewing 
the entire subject, the present paper aims at indicating the usefulness and 
naturalness of implementing the Jordan pair language in such a theory. Not 
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quite an algebra, but not far from it, the Joran pair concept nicely generalizes, 
with far-reaching consequences, that of a Jordan algebra, which has had 
so much development in both physics and mathematics. The definition and 
the relevant characteristics of  Jordan pairs will be introduced in Section 4. 
In Section 5 I show how Jordan pairs enter the "magical supergravity" 
theory. 

2. THE SCALAR MANIFOLD 

A property of extended supergravity is the occurrence of noncompact 
global symmetries and of compact local symmetries in the Lagrangian or 
in the equations of motion. The physical meaning of these symmetries is 
not clear, but their importance lies in the fact that they strongly constrain 
the form of the Lagrangian and, in particular, give a geometrical interpreta- 
tion to the scalar fields of the theory. The scalar fields assume, indeed, 
particular interest in the theories in which they are coupled to gravity, due 
to the fact that they can (and do) appear nonpolynomially in the Lagrangian, 
since the terms of the type Kq5 (where K is the gravitational coupling 
constant and ~b is a scalar field) are dimensionless (Cremmer, 1982; van 
Nieuwenhuizen, 1981). 

If we denote by G the noncompact  group related to the global symmetry 
and by H the compact group related to the local symmetry, then it is 
assumed, in extended supergravity, that the scalars parametrize the coset 
space G/H. It is further assumed that H is the maximal compact subgroup 
of G, in order to have a positive-definite metric on the coset; this implies 
that the kinetic terms for the scalar fields be positive-definite ("no ghosts 
in the theory").  

The best way to realize how such a type of symmetry occurs is to start 
from a theory in d > 4 dimensions and perform the dimensional reduction. 
One thus realizes that the global symmetries can be related to the re- 
parametrization of the extra coordinates--hence they are of noncompact  
type--whereas the local symmetries can be related to the extension of the 
local Lorentz symmetry to the extra dimensions--the metric in the extra 
dimensions being such that the resulting symmetry be of compact type. 
Examples of  these theories, with particular emphasis on the so called 
"hidden symmetries" of  the scalar fields, can be found in Cremmer (1982). 
It is interesting to notice that the more the symmetry is extended, the more 
restrictions are put into the theory, so far as the possible hidden sym- 
me t r i e s -hence  the allowed geometries for the scalar fields--are concerned. 
It is currently believed that in the maximally extended theory (d = 4, N -- 8 
or d = 11, N = 1), the manifold of scalars is the unique geometry of the 
coset space E7(+7)/SU(8) (Cremmer and Julia, 1979). Notice, in fact, that 
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because of dimensional reduction, from 11 to 4 dimensions, we expect the 
global symmetry group G to contain Sl(7. ~)-- re la ted to the reparametriza- 
tion in the seven extra coordinates--while, because of N = 8, there are 
reasons to expect an SU(8) maximal local symmetry (Cremmer, 1982). 
Since the group H = SU(8) must be the maximal compact subgroup of G 
and since the number of scalars [ = d i m ( G ) - d i m ( H ) ]  is 70, in N = 8  
supergravity, the exceptional group E7<+7) is singled out as the only simple 
Lie group satisfying all the requirements for the global symmetry. 

The symmetry of the scalar fields extends (possibly only on-shell) to 
the other fields in the theory, putting new constraints into the various terms 
of the Lagrangian. From these facts--i.e, from the peculiarity of the geometry 
of the scalars and from the fundamental role that this geometry has in 
building the Lagrangian--stems the unique role of the scalar fields in 
supergravity, which motivates the study of the scalar manifolds and of the 
way of explicitly realizing the parametrization of such manifolds. 

3. MAGICAL SUPERGRAVITY 

In this section, I briefly outline the "magical" case of the Maxwell- 
Einstein supergravity theory worked out by GST [see GiJnaydin et al. 
(1983, 1984) for details]. The word "magical" comes from its connection 
with the Freudenthal-Tits magic square (FTMS) (Freudenthal, 1959; Tits, 
1955), a table relating Lie algebras to Jordan algebras and Hurwitz algebras 
(Schafer, 1966), which I shall introduce later in this section. 

The field content of N = 2, d = 5 supergravity coupled to n Maxwell 
(i.e., Abelian) vector multiplets is the following: 

{e~, ff~, A~, A~, ~b x} (2) 

i = 1 , 2 ;  I = 0 , 1 , . . . ,  n; a , x = l , . . . , n ;  m , / x = 0 , . . . , 4  

Because of N = 2, the graviton multiplet indeed contains two gravitinos 
and one vector field, whereas each vector multiplet contains two spin-�89 and 
one scalar field. 

The problem of characterizing the scalar field geometry has been 
reduced by GST to a purely algebraic problem. The n-dimensional scalar 
manifold 992 is viewed as a hypersurface of an (n + 1)-dimensional Rieman- 
nian space ~ satisfying the equation 

~;(~) = 1 (3) 

where 2( is a homogeneous cubic polynomial in the q-coordinates ~. 
The "magical case" occurs under the assumptions that N is not factoriz- 

able and ~r is a locally symmetric space. Then it is shown by GST that this 
is only possible if the number of scalar fields is 

n = 311 + dim(A)] - 1 (4) 
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where A = ~, C, H, ~ is one o f  the four Hurwitz  algebras o f  the real, complex,  
quaternion,  oc tonion  (or Cayley) numbers  [hence dim(A) - 1, 2, 4, 8, respec- 
tively, and n = 5, 8, 14, 26]. 

It is also shown that  93~ is a homogeneous  space, which, for the various 
n values, is the fol lowing coset2: 

for n = 5  (i.e., A = ~)  

f o r n = 8  ( i . e . , A = C )  

for n = 14 (i.e. A = H) 

ing. 

= s t (3 ,  R ) / s o ( 3 )  

g)? = Sl(3, C )/ SU(3) 
(5) 

gJ~ = SU*(6)/ USp(6) 

for n = 26 (i.e., A = ~)  9J~ = E6(-26)/F4 

The relationship between this theory and Jordan  algebras is the follow- 
I f  we denote  by M~, i =  1 ,2 ,4 ,  8, 3 the Jordan  algebra o f  the 3 x 3  

Hermit ian matrices (over R, C, H, ~, respectively), then: 

1. The points o f  c~ are elements o f  M~. 
2. N is the norm (generalized determinant)  (Jacobson,  1968) o f  M~. 
3. The points of  9)2 are the norm 1 elements o f  M~. 
4. G is the reduced structure group (norm-preserving group) o f  M~ 
5. H is the au tomorph i sm group of  M~. 

When  the theory is reduced to four dimensions,  the number  of  scalars 
increases, since we get n + 1 scalars f rom the vector fields and 1 scalar f rom 
the graviton field, adding up to 2(n + 1) [ - -2  dim(M~)]  scalars. The scalar 
manifolds  in four  dimensions  are, for the various n values (i.e., n = 
5, 8, 14, 26), the fol lowing coset spaces: 

Sp(6, R)/SU(3) x g ( 1 ) ,  SU(3,  3)/SU(3) x SU(3)  x U(1) 
(6) 

SO*(12)/SU(6)x g ( 1 ) ,  ET(-zs~/E6x g ( 1 )  

This is the case I shall consider  in the next section, but before focusing 
on it I report  the case o f  the reduct ion o f  the GST theory to three dimensions 
in order  to complete the link between this theory and the Freudenthal -Ti ts  
magic  square. In three dimensions the scalars parameterize the following 
coset spaces, according to the values o f  n = 5, 8, 14, 26: 

F4(4) / USp(6) x SU(2) ,  E6(2)/SU(6 ) x SU(2)  
(7) 

E7(_5)/S0(12) x SU(2) ,  Es( 24)//~7 X SU(2)  

21 note in passing that SU*(6) ~ Sl(3, H) and therefore E6(_26 b which contains the Sl(3, &) 
groups (for /~ =N, C, H) as subgroups, can be thought of as a generalization of the special 
linear groups to the octonions. Such a generalization has the sole meaning of an extrapolation 
since, due to the nonassociativity of the Cayley algebra, octonionic matrices cannot form a 
group under the linear matrix product. 

3M38 is called the exceptional Jordan algebra. 
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Table I. 

R 
R@R 
I-I= 

The Particular Real Form of the FTMS for N = 2 Supergravity ~ 

M~ MI MI MI 

SO(3) SU(3) USp(6) F 4 
St(3, ~) Sl(3, C) SU*(6) E6(_26 ) 
Sp(6, R) SU(3, 3) SO*(12) E7(_25 ) 
F4(4) E6(2) E7(-5) E8(-24) 

all= and ~= are quaternionic and octonionic split (namely nondivision) algebras over 
the reals. M~ (i = 1, 2, 4, 8) is a real Jordan algebra. A is an alternative, composition, 
real algebra. 

All the global symmetry groups of the "magical case"--namely all the 
groups appearing in the "numerator" of the cosets shown above--plus the 
local symmetry groups of the five-dimensional theory fit into the Freuden- 
thai-Tits magic square (FTMS) (hence the name given to this theory) given 
in Table I. The recipe given by Tits (1955) for building the 16 Lie algebras 
L of this table is the following: 

L = DER(A) @ (Ao x Jo) @ DER(J) (8) 

where DER(A) and DER(J) are the generators of the automorphism group 
of the Hurwitz (division) algebra A and of the Jordan algebra J; A o and 
Jo are the traceless elements of A (that is, the pure imaginary elements of 
A) and of J. For A = R, C, H, ~ (real, complex, quaternion, octonion num- 
bers, respectively) and from J = M~, i = 1, 2, 4, 8, we get from (8) the Lie 
algebras shown in Table I. 

As already said, not all the groups of the GST theory appear in Table 
I, but I stress here that all of them, modulo some U(1) or SU(2), are real 
forms of the complex Lie algebras shown in the "complex form" of the 
magic square of Table II. The construction of this table is the same Tits 
construction with the real Jordan algebras M~'replaced by the corresponding 

Table II. The FTMS for complex Lie Algebras" 

A, A: Ca F4 
A 2 A2t~A2 A5 E6 
C3 A5 D6 E7 
F4 E6 E7 Es 

aj~, i=1 ,2 ,4 ,8 ,  is the complexification of the 3x3  
Hermitian matrices M~ over ~, C, H, ~, respectively. 



Scalar Manifolds and Jordan Pairs in Supergravity 515 

complex i f i ca t ion  j~.4 This  no ta t ion ,  name ly  M3 for the real  J o r d a n  a lgebras  
o f  the  F T M S  and  J~ for  the  complex  ones,  will  be kep t  t h roughou t  this paper .  

4. I N T R O D U C I N G  T H E  J O R D A N  P A I R S  

Having  desc r ibed  wha t  is mean t  by  "mag ica l  supergrav i ty , "  I now turn  
to the J o r d a n  pa i r  con ten t  o f  the  theory.  In  o rde r  to mot iva te  the in t roduc t ion  
o f  such a pecu l i a r  concep t  as that  o f  a J o r d a n  pa i r  and  at the same t ime 
make  this sec t ion se l f -consis tent ,  it is wor thwhi le  to sketch briefly the 
d e v e l o p m e n t  o f  the J o r d a n  theory  in ma themat ics  fo l lowing its c rea t ion  by  
Jo rdan ,  yon  N e u m a n n ,  and  Wigner  ( Jordan ,  1932; Jo rdan  et aL, 1934). 
References  to papers  con ta in ing  all deta i ls  o f  wha t  is ou t l ined  here 
unr igorous ly  will  be given t h roughou t  the sect ion;  I pa r t i cu la r ly  r e c o m m e n d  
the excel len t  and  b r i e f  review by M c C r i m m o n  (1978). 

The J o r d a n  a lgebra ic  a p p r o a c h  to q u a n t u m  mechanics  was i n t ended  
to fo rmula te  quan tum theory  jus t  in terms o f  observables .  The resul t ing 
a lgebra  is the  a lgebra  o f  " f o r m a l l y  rea l"  He rmi t i an  m a t r i c e s - - " f o r m a l l y  
rea l"  mean ing  tha t  the d i agona l  entries,  hence  the e igenvalues ,  o f  the 
matr ices  are  real  and  there fore  the a lgebra  is real.  The formal  real i ty  ax iom 
(x2+y2=O~x=y=O) was d r o p p e d  by  ma themat i c i ans ,  who  wan ted  to 
fo rmula te  the  Jo rdan  theory  on a gener ic  (numer ica l )  field, thus re ta in ing  
on ly  the o the r  two ax ioms  tha t  define J o r d a n  a lgebras :  

x .  y = y .  x (commuta t iv i ty )  
(9) 

(x  2" y)  �9 x = x 2- (y" x)  (power  associa t iv i ty)  

The or ig inal  a l g e b r a s - - t h o s e  inc luding  the " fo rma l  rea l i ty"  a x i o m - - a r e  
referred to as real  J o r d a n  a lgebras .  Jo rdan ,  von N e u m a n n ,  and  Wigner  gave 
a comple te  c lass i f icat ion o f  the latter.  They  all  c o r r e spond  to the a lgebras  
o f  Hermi t i an  matr ices  on  a real ,  a complex ,  or  a qua te rn ion ic  Hi lbe r t  space ,  
with the single excep t ion  o f  M~, the  a lgebra  o f  3 x 3 Hermi t i an  matr ices  
over  the oc ton ions ,  5 for  which  no under ly ing  Hi lber t  space  can be defined.  

4There is another difference in the construction of Table II versus Table I: the algebras A 
must be carefully chosen in order to get the right noncompact real forms in Table I. For 
instance, in the second row the algebra A is RO~q in Table I and C in Table II. The reason 
for this difference is that the generators built out of A • J0 must be noncompact (Hermitian), 
and an imaginary unit (like A o if A were C) in front of Jo (which is already Hermitian) would 
spoil the noncompactedness. This care need not be taken for the complex Lie algebras because 
of complex linearity. 

sI should actually write "formally real Hermitian matrices" or "Hermitian matrices over the 
real octonions" in order to stress that the diagonal entries of M38 are real and the off-diagonal 
elements are real octonions. In the sequel I shall deal with complex Jordan algebras, where 
the diagonal entries are complex and, for instance, in the case of J3S--the complexification 
of M~--the off-diagonal elements are complex octonions. 
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The complete classification of Jordan algebras on a generic field was 
given by Jacobson (1968), who made use of  the definition of Jordan algebras 
in terms of the product U~y, which is quadratic in x and linear in y, instead 
of the symmetric linear product x .  y = �89 + yx).  The axioms for the quad- 
ratic map Ux and its linearization Vx, y , defined by Vx, yZ = ( Ux+z - Ux - Uz)y, 

are the following: 

Ul= Id 

u~v,,~ = vx,,g~ (lO) 

u ~ ,  = uxu ,  u~ 

This new formulation, which is called the theory of "quadratic Jordan 
algebras," is equivalent to the linear approach,  6 but it reveals the essential 
algebraic properties of  Jordan algebras: 

1. I f x  is an invertible element of./, then U~ is invertible and Ux-' = U~ 1. 
2. The generic norm (generalized determinant) 3 r satisfies the composi- 

tion N ( U x y )  = N ( x ) N ( y ) N ( x ) .  
3. It is possible to define inner ideals--i.e.,  subspaces B of J such that 

UBJ c B--which  play the same role as the one-sided ideals in the 
case of an associative ring. 

4. It is possible to define isotopy in terms of the quadratic map U: an 
isotope jEvj of a quadratic Jordan algebra J having an invertible 
element v is an algebra that has the same vector space as J but is 
based on the twisted product u ~ l y  = UxU~ly, which shifts the unit 
in the isotope to 1Ev] = v. 

The notion of isotopy is particularly interesting, since isotopic Jordan 
algebras need not be isomorphic and many important properties of  Jordan 
algebras are not affected by isotopy. The idea of including in a unique 
structure the concept of  a Jordan algebra plus all its isotopes has led to the 
definition of Jordan pairs. The structure group of a Jordan algebra, as 
encountered in "magical  supergravity," can be viewed as the group of 
autotopies, that is, the group of isomorphisms of J with its isotopes or, 
equivalently, as the automorphism group of the Jordan pair, which includes 
J and its isotopes. 

Another generalization of Jordan algebras, based on a quadratic map, 
is the Jordan triple system, which can be thought of  as a quadratic Jordan 
algebra with no unit element. I shall not write here the axioms for a Jordan 
t r iple-- they are strictly analogous to those defining a Jordan pair but I 
give instead a very simple example (McCrimmon,  19~78). Think of the space 
of rectangular matrices: there is no way one can linearly multiply two such 

6Except for fields of characteristic 2 or rings having no scalar �89 for which the linear theory 
does not work (McCrimmon, 1966). 
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matrices x and y to get another matrix of the same type. One could do this 
though, through a quadratic map U such that Uxy = xy'x. This is the easiest 
example of  a Jordan triple. 

A Jordan pair generalizes both the concept of  a Jordan algebra and 
that of  a Jordan triple. A Jordan pair V = (V § V-) (Loos, 1975) is a pair 
of spaces that act on each other through a quadratic map U that is such 
that, for o-= +, 

Ux=y ' ~ e V  ~ f o r x ~ V ~ ;  y - ~ c V  -~ (11) 

For example, we can form a Jordan pair by taking V + as the set of 
matrices n x m, V- as the set of  matrices m x n, and defining Ux+y - =  
x+y-x  +. This generalizes the Jordan triple of  the above example. Thus we 
have that: 

Jordan triple system = Jordan pair with involution 
Jordan algebra up to isotopy = Jordan pair with invertible elements. 

An important feature of  Jordan pairs which is relevant to this paper  
is the relationship between Jordan pairs and three-graded Lie algebras. A 
three-graded Lie algebra L is a Lie algebra that can be split into three pieces 
L= L I+L o+L _I  such that [Li, Lj]c  Li+j--the commutator  vanishing 
whenever i+ j  ~ 0, +1, -1 .  Any three-graded Lie algebra can be obtained 
from a Jordan pair (McCrimmon,  1978) and, vice versa, a Jordan pair V 
can be obtained from L by setting 

L, = V +, L_, = V-,  Ux+y- = [[x +, y - ] ,  x +] (12) 

The group obtained by exponentiating L0 is the group of automorphisms 
of V. 

Two simple cases of  three-graded Lie algebras are A2 and C3, the 
complexifications of  SU(3) and Sp(3), respectively. In Figures 1 and 2 the 
root diagrams of such algebras are shown together with their split into a 
three-graded s t ruc ture- -of  course, all the generators in the center of  the 
three-graded Lie algebras, which do not appear  in the root diagram, are in 
Lo. One can see that Lo contains a subalgebra K (K = A~, in the case of 
A2; K = A2, in the case of  C3). The rank (the number  of  generators in the 
center) of K is one unit lower than the rank of L. Since all the generators 
in the center of  L are in Lo, it follows that the only generator in Lo that is 
not in K is orthogonal to K - - i n  the space of the root d i ag ram- -  and hence 
it gives opposite charges to L1 and L-1. Therefore Lo itself splits into the 
direct sum of  K and the generator of an Abelian subgroup]  

7This subgroup is, for complex algebras L, a complex scale change (the subgroup, as well as 
its generator, is denoted in this case by C). When taking real forms of L this subgroup becomes 
either U(1) [or SO(2)] or a real scale change [or SO(I, 1)], according to the particular real 
form considered. 
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- - o ,  

roots of L0 (A le(Z)  

roo ts  of  L1 (we igh t  diagram 
of the 2 of A1] 

roots  of L l ( w e i g h t  diagram 
of the 2'~of A1) 

~t / 

Fig. 1. Root  d i a g r a m  of  A 2. 

For instance, the subalgebra Lo of A2 is the direct sum of A1, represented 
in the diagram by the roots of the "isospin" axis, and the "hypercharge" 
generator, represented in the diagram by the axis orthogonal to Al - -by  
abuse of notation, to be more explicit, we use for the generators in the 
center of-A 2 the same names as those of SU(3). The spaces L1 and L_1 are 

~t 

/;S! / 
O / O 

roots of L 0 (A2e(E) 

roots of L1 (weight diagram 
of the 6 of  A2) 

. . . . .  T~ 
roots of L_I (weight  diagram 

of the 6 * o f  A 2 ) 

o 
/ / /  

Fig. 2. Root  d i a g ra m of  C a . 
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the carrier spaces of the representations 2 and 2* of A 1 and have opposite 
"hypercharge." As far as the Jordan pair content of the three-graded algebras 
A2 and C3 is concerned, it is easily shown that in the case of  A2 the Jordan 
pair is the doubling of a Jordan triple system (the 2 and 2* are indeed 
spinors, hence rectangular matrices, as in the example given above of  a 
Jordan triple system) and in the case of C3 it is the doubling of a Jordan 
algebra [in particular the Jordan algebra J~ (Truini et  al., 1984)]. 

The connection between three-graded Lie algebras and Jordan pairs 
can be used to show the Jordan pair content of  the FTMS. In fact (Truini 
et al., 1984), referring to the "complex form" of the magic square (see Table 
II), we have that: 

1. Any Lie algebra L in the third row is a three-graded Lie algebra 
(we have just shown the case of C3 (third row, first column) as an 
example). 

2. The subalgebra Lo of  L is the direct sum of the Lie algebra appearing 
in the second row of  the FTMS (at the same column of L) with the 
generator of a complex scale change. 

3. The spaces La and L_~ (namely the Jordan pair) are two copies of 
the complex Jordan algebra shown on top of the FTMS at the same 
column of  L and they are the carrier spaces of two representations, 
one conjugate to the other, of the group generated by Lo. 

Since Lo generates the group of automorphisms of the Jordan pair, the 
second row of  the magic square is to be viewed as formed by the Lie algebras 
generating the automorphism groups of  the Jordan pairs (L1, L_I). The 
three-grading of the Lie algebras in the third row of the FTMS is shown in 
Table III (Truini et  al., 1984). 

To make contact with "magical supergravity," we must consider a real 
form of the FTMS, in particular the real form shown in Table I. In this real 
case also the algebras in the third row are three-graded Lie algebras, but 
the Jordan pa i r  that we had in the complex case is restricted (since the 
number of parameters is halved) into one of the following cases, depending 
upon the real form considered [Truini et  al. (1984); see also Jacobson (1971) 
for the exceptional case]: 

1. A Jordan pair with involution (which is equivalent to a Jordan triple 
system. 

2. A pairing of a real Jordan algebra (which is equivalent to a real 
Jordan algebra up to isotopy). 

The parameter counting shows that the above alternative depends upon 
the fact that the restriction to the real form of L1 (and L_I) be a complex 
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Table IlL Three-Grading for the Third Row of the FTMS a 

Algebras Complex dimension 

C3=J~I~(A2(~C)(~J~ * 21 = 6 + ( 8 + 1 ) + 6 "  
As=J~O(A2GA2(~C)GJ 2. 35 = (3 x 3) + (8 +8-t- 1) + (3 x 3)* 
06 = J40) ( A s O C ) Q  J 4. 66 = 15 + (35 + 1) + 15" 
E 7 = J80) (E6(~ C)@ j 8 ,  133 = 27 + (78 + 1) + 27* 

aThe asterisk denotes the conjugate representation. 

or a real carrier space for the representation of the group generated by the 
real form of  L0. 

To illustrate what was just said, consider again the example of A2. 
Although A2 is not an algebra in the third row of the FMTS, it is very 
simple to work with and shows just as well the essence of what I am 
asserting. What we have learned is that the three-grading of A2 is the direct 
sum of Lo = AIG C (by C I indicate here the generator of a complex scale 
c h a n g e ) ,  L 1 = 2 (the two-dimensional representation of the group generated 
by A1), and L_I = 2*. Let us consider now the compact real form of A2: 
SU(3). The subalgebra Lo becomes SU(2)O)U(1). Since the two- 
dimensional representation of SU(2) has a complex carrier space, it is clear, 
by counting the parameters, that an element in the Jordan pair must be 
composed of an element in the 2 of SU(2) and its conjugate (not an 
independent one) in the 2*. In fact, writing a generic element of the algebra 
of SU(3) 8 as the skew-symmetric matrix 

- a *  o~ 2 

- b *  - c *  a3 

al-~- 0/2-t'- 0/3 = O, 0/1, 0[2, Or3 ~ ,  

one can take a generic element of Lo :) i * 0/2 

0 0/3 

and the 2 and 2* are 

(!01)0 (:0i)0 
0 - b *  - c *  

(13) 

a, b, c ~ C  

(14) 

(15) 

sI abuse the notation for groups and corresponding algebras by denoting them in the same 
way: it should be clear by the context which one I refer to. 
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We see from (13)-(15) that the elements of the 2 and the 2* are not separately 
elements of SU(3), but the pair (x, - x* ) ,  where x is an element of the 2 
of SU(2), does belong to SU(3). 

If  we had taken Sl(3, ~) as a real form of A2, then a generic element 
of L would be a generic, real, traceless matrix and the algebra L0 would 
be Gl(2, ~). The conjugation between the 2 and the 2* of Gl(2, R) is simply 
the transposition and an element x in the 2 or y* in the 2* as well as a pair 
(x, y*), with y independent of x, all belong to Sl(3, ~). 

This trivial example shows how naturally the Jordan pair language 
enters the theory of three-graded Lie algebras. In the sequel I show how 
Jordan pairs describe the scalar manifold in d = 4 "magical supergravity," 
where the global symmetry group is generated by three-graded Lie algebras. 

5. J O R D A N  P A I R S  I N  S U P E R G R A V I T Y  

Let me go back to the reduction of "magical supergravity" to four 
dimensions. The scalars parametrize the following coset spaces G/H: 

Sp(3, R)/SU(3) x U(1), SU(3, 3)/SU(3) x SU(3) x U(1) 
(16) 

S0"(12)/SU(6) x U(1), E7(_2,~/E6 x U(1) 

Since G is generated by a three-graded Lie algebra L (third row of the 
FTMS) and the subalgebra Lo in the three grading of L generates H (Truini 
et al., 1984), it follows that L/Lo is a Jordan pair, which means that the 
tangent spaces to the manifolds (16) are Jordan pairs. Moreover, because 
L1 and L_I are complex representations of the group H, it follows from the 
previous section that the Jordan pair (L1, L-l)  is formed by elements linked 
by an involution, which effectively makes the Jordan pair a Jordan triple 
system. It follows from the fact that the group H is the maximal compact 
subgroup of G that the involution exchanging L1 with L_~ is the complex 
conjugation (Truini et al., 1984). The Jordan pair is therefore made up of 
elements (x, x*), where x ~ J~, i = 1, 2, 4, 8 (the complexification of M3), 
and the asterisk denotes the conjugation in the complex field which com- 
plexities- the real Jordan algebra M~. The compact group H is the 
automorphism group of such pairs. 

Among the "magical" cases, those associated with the exceptional 
groups are the most interesting ones. They are, in fact, the only ones that 
cannot be obtained as truncation of N = 8 supergravity theories (Gfinaydin 
et aI., 1984). In this sense they are a maximal extension of  an N = 2 theory. 
In this context, GST present in their papers another exceptional case in 
four dimensions in which the manifold parametrized by the scalars is the 
coset 

J~6(_14)/S0(10) X SO(2) (17) 
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I will not go into a detailed discussion of this case from the point of view 
of the Jordan pairs, for which I refer to Truini et al. (1984). I just report 
here the result that the points in the geometry (17) can be regarded as 
idempotent elements of a Jordan pair. 9 

In a previous paper (Truini and Biedenharn, 1982) we examined the 
geometry of 

E6,o/ S O (  I O ) • S0(2)  (18) 

where E6, o is the compact form of E6. This geometry has been viewed as a 
planar geometry (very close to a projective plane) whose points have been 
classified as a specific class of idempotents of  the Jordan pair embedded 
in the three grading of E7, namely the Jordan pair (j8, j~.) .  In a sense we 
have found for Jordan pairs an analogous situation to that of real Jordan 
algebras of 3 x 3 Hermitian matrices, for which the set of trace-one idem- 
potents (the projectors associated with pure states in quantum mechanics) 
form a projective plane. 

The case of the coset (17) is quite different from the case (18), due to 
the fact that E6(_14), being noncompact,  has different strata. This implies 
that E6(_14 ) c a n n o t  act transitively on the same class of idempotents as the 
one that forms the geometry (18). An orbit of E6(_14 ) in the stratum having 
SO(10) x SO(2) as stability group is like a two-sheeted hyperboloid and 
the description of the coset (17) by use of idempotents is the analogue of 
parametrizing a hyperboloid by means of projective (inhomogeneous) coor- 
dinates. It is well known that this does not turn the coset into a projective 
plane. Analogously, the geometries (18), which is as close to a projective 
plane as can be (Truini, and Biedenharn, 1982), and (17) are essentially 
different, but they both can be described using idempotents of the Jordan 
pair (J~, J38), the tilde denoting the suitable conjugation for the real form 
of E 6. 

The scalar fields that parametrize the coset (17) can thus be viewed as 
elements of a Jordan pair. An advantage of this formulation is that the 
action of the group E6(_14 ) on  the points of the coset can be easily obtained 
by the action of the three-grading on the Jordan pair, and this in turn is 
the action of E7 on its own generators. 

The coset (17) can be viewed as related to the fourth column of the 
magic square, since its points are idempotent elements of a Jordan pair 
related to real forms of E6 and E7, which are Lie algebras of  the fourth 
column of the FTMS. One can extend, therefore, the construction of cosets 
out of idempotents of a Jordan pair to the Jordan pairs related to the first 
three columns of the magic square. In this way one would get the cosets 

9An idempotent of a Jordan pair is a pair (x, y) such that UD' = x, Uyx = y. 
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(Truini et aL, 1984) 

SU(2, 1)/SU(2) x U(1) 

SU(2, 1) • SU(2, 1)/SU(2) x SU(2) x U(1) 

SU(4, 2)/SU(4) • SU(2) x U(1) 

(19) 

Hence these coset spaces also can be considered as possible scalar 
manifolds for a nonexceptional N = 2, d = 4 supergravity theory. The mani- 
folds (19) can all be embedded into the manifold (17) and are obviously 
easier to work with. One could therefore start examining these cosets as an 
approach to the study of  the manifold (17), which already reveals essential 
features of this more complicated structure. 

Remark. I emphasize that there is a substantial difference in regarding 
the geometries (17) and (19), on the one side, and (6), on the other side, 
as Jordan pairs. In the former case the (idempotent) elements of the Jordan 
pair parametrize the coset; in the latter case the elements of the Jordan pair 
sit in the tangent space of the coset, since in this latter case the Jordan pair 
is the modulo of  two Lie algebras and not of the corresponding Lie groups. 

6. CONCLUSIONS 

A belief that many theoretical physicists share is that a good theory 
has to be characterized by mathematical beauty and simplicity. I do have 
the feeling that this should be so, not quite because what theoretical physics 
tries to describe is beautiful and simple, but rather because it is a duty of 
the theoretical physicist to find a language to describe the theory that makes 
it look beautiful and simple. The importance of finding such a language 
lies in the fact that, if a language has such a power of synthesis, it can 
easily unveil deeper structures in the theory, thus opening the way for 
further progress. 

From this point of  view the language of Jordan pairs seems to have 
several important features, which I hope to have sufficiently emphasized in 
the present paper: 

1. It is a most natural description, in the framework of the Jordan 
theory, for a system that includes both Jordan triples and Jordan 
algebras. 

2. It very nicely preserves the Lie albegra structure whenever a link is 
made between Jordan pairs and three-graded Lie algebras. 

3. It unifies the description of two different cases of d = 4 magical 
supergravity [see (6) and (17), (19)]. 
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